

AMR in the food chain in Germany

- the one health aspect

Bernd-Alois Tenhagen

National Reference Laboratory for Antimicrobial

Resistance

Outline of my presentation

Introduction – Antimicrobial Resistance and public opinion

Development of Resistance in Humans

Development of Resistance in Animals

Actions taken for reduction

What is one health about?

Public opinion: Reasons for AMR

What is the main cause of AMR according to your opinion?

BfR-Verbrauchermonitor Spezial (01/2015), **n = 834** Befragte, die von antibiotikaresistenten Bakterien gehört haben; alle Angaben in Prozent; Rundungsdifferenzen möglich

Exposure Pathways – Food chain

Resistance to cephalosporins in *E. coli* from humans in Germany

Datenquelle: Robert Koch-Institut: ARS, https://ars.rki.de, Datenstand: 01.07.2015

AMR to 3rd Gen. Cephalosporins in human *E.coli*

isolates 2003

AMR to 3rd Gen. Cephalosporins in human *E.coli*

isolates 2013

Oxacillinresistance in *S. aureus* from humans in Germany

Datenquelle: Robert Koch-Institut: ARS, https://ars.rki.de, Datenstand: 01.07.2015

Baseline human medicine:

- Difference between different levels of health care provision
- Resistant bacteria also in ambulatory service
- Multiresistant strains are widespread
- Divergent trends for MRSA and ESBL/AmpC producing E. coli
- Yes, we do have a problem and need to take action

Resistance in the food chain 2014 E. coli

Resistance in *E. coli* from farm animals, 2009-2011

Actions taken for reduction

German strategy against antimicrobial resistance (DART)

- First launched in 2008
- Updated as DART 2020 in 2015

Common approach of

- Ministry of Health
- Ministry of Food and Agriculture
- Ministry of Education and Research

DART

Principle of

- Defining target/ directions
- Accepting responsibilities
- Defining players
- Designing measures
- Revisiting results

Example – Antimicrobial use in Veterinary Medicine

- Guidelines for prudent use since 2000
- In 2011 first national collection of data on antimicrobial sales in Germany
- 1706 tons were sold to veterinarians for use in animals
- Intensive public debate
- Common sense: This needs reduction
- Actions taken by private and public sector

Measures taken (public sector)

Change of German drug act

- Meat production holdings need to register their antimicrobial use in a state database
- The extend of antimicrobial use is measured and targets are defined per production type based on the current use
- Farmers have to compare their use with the target
- High users need to take action

What's the consequence?

Use above median (yellow bars)

- Message: Your use is above the average
- You should:
 - Consider reasonss and reduction options with your veterinarian

Use in upper quartile (red bars)

- Message: Your use is far above the average
- You have too
 - write down a strategy for reduction (with your vet) and
 - present it to the local veterinary authority for evaluation

General idea

- Target values should be feasible
- > If 75 % of farms can reach the target, this is feasible
- High users are assumed to have the greatest reduction potential
- If high users reduce, target values may drop over time
- New farms are addressed
- Further reduction etc.

Sales of veterinary antimicrobials in (BVL 2015)

What is one health about?

Example MRSA in farm animals and humans

MRSA in humans

Hospital acquired (ha-MRSA)

Health care associated (hca-MRSA)

Community acquired (ca-MRSA)

MRSA in farmers and vets

Livestock associated (LA) MRSA

Mainly one clonal complex (95 %)

Few diseases in farm animals

Example MRSA in farm animals and humans

MRSA in humans

96,6 % (of all submissions to NRZ)

97,4 % (only considering clinical cases)

3,4 % (all) 2,6 % clinial cases* Livestock associated (LA) MRSA

Mainly one clonal complex (95 %)

Few diseases in farm animals

Epid. Bull. 31/2015

CTX-M-Types of ESBL of different origin

ESBL in farm animals and humans **Existing but ESBL** in humans Farm animal not **ESBL** quantifiable

Summary

- Antimicrobial resistance is an important public health topic in Germany
- Public debate and research/monitoring results have led to action on different levels
- The direction of the development is positive
- The common problem can be identified for some bacteria but only estimated for others
- Reducing antimicrobial resistance is a common task for human medicine and veterinary medicine, each at its place

