

Integrated Analysis of Data on Resistance and Antimicrobial Consumption from the Human and Animal Sectors in Europe The JIACRA Report

Dr. Ernesto Liebana

BIOHAZ Panel Team leader, BIOBONTAM Unit

BACKGROUND

- Description of existing monitoring/surveillance systems
- 2011 and 2012 data from the EU MSs, IS, NO and CH
- Datasets used have been collected for purposes that were not a priori an integrated analysis

European Antimicrobial Resistance Surveillance Network (EARS-Net)

European Surveillance of Antimicrobial Consumption Network (ESAC-Net)

Food- and Water-borne Diseases Network (FWD-Net)

Scientific Network on **Zoonoses Monitoring Data**

EU Summary Report on AMR in zoonotic and indicator bacteria from humans, animals and food

European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)

European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)

- Data on Sales of Veterinary Antimicrobials at package level
- All food-producing animal species
- Data not available by animal species
- Normalised data for the animal population that can be subjected to treatment
- Harmonised collection of data

Scientific Network on Zoonoses Monitoring Data

EU Summary Report on AMR in zoonotic and indicator bacteria from humans, animals and food

- Resistance in Salmonella, C. jejuni and C. coli, indicator commensal E. coli and enterococci
- Harmonised set of antimicrobials and protocols
- ECOFFs used to interpret resistance
- Monitoring performed on a voluntary basis in indicator bacteria

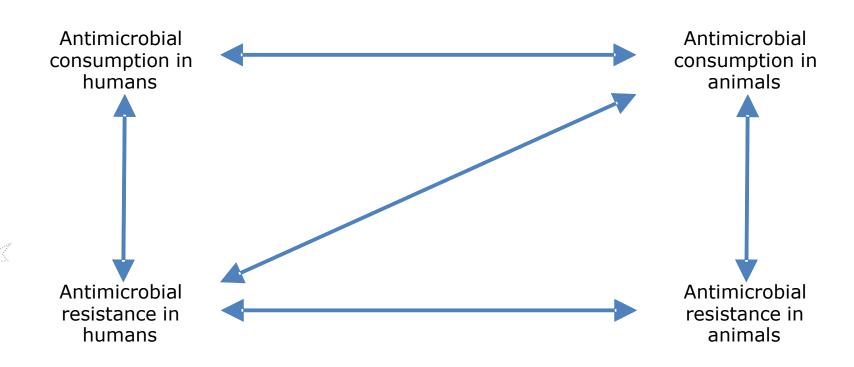
European Antimicrobial Resistance Surveillance Network (EARS-Net) European Surveillance of Antimicrobial Consumption Network (ESAC-Net) Food- and Water-borne

Diseases Network (FWD-Net)

ESAC-Net

- Consumption data from the community (primary care) and from hospitals
- Data collected at the package level

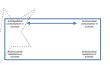
EARS-Net


- Invasive isolates from bloodstream infections (BSIs) in humans
- Including E. coli

FWD-Net

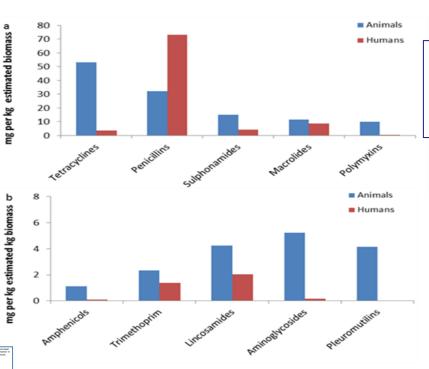
- Clinical AST of Salmonella and Campylobacter from humans
- Clinical breakpoints

POSSIBLE RELATIONSHIPS INVESTIGATED



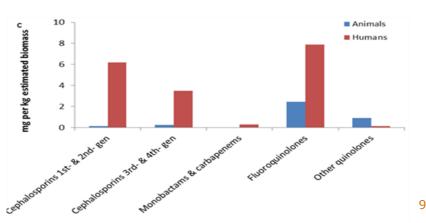
Total tonnes of active substance and estimated biomass

- In 2012, in the 26 EU/EEA countries, the amounts of active substance of antimicrobials sold equalled:
 - 3 400 tonnes in humans
 - 7 982 tonnes in food-producing animals
- Estimated biomass, expressed as 1000 tonnes:
 - o 28 884 for humans
 - 55 421 for animals

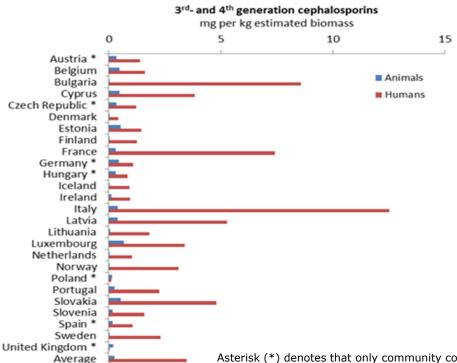


	Total consumption (expressed in mg/kg of estimated biomass)	
In humans	116.4 mg/kg (range: 56.7 - 175.8 mg/kg)	
In animals	144.0 mg/kg (range: 3.8 - 396.5 mg/kg)	

- 15/26 countries:
 - o animals < humans
- 3/26 countries:
 - similar for animals and humans
- 8/26 countries:
 - animals > humans



Selected antimicrobial classes - 26 EU/EEA countries in 2012


Highest selling AMs classes

- In human medicine: Pen, Macro, FQ
 - In Food-producing animals: Tet, Pen, Su

3rd- and 4th-generation cephalosporins - 26 EU/EEA countries in 2012



- Consumption of 3rd- and 4thgeneration cephalosporins much lower for animals than for humans.
- This antimicrobial class is predominantly used in hospitals, and therefore the comparison may be misleading for countries not reporting (*) such hospital consumption.

Population corrected consumption of fluoroquinolones in humans and food-producing animals by country in 26 EU/EEA countries in 2012

In most countries, the consumption of fluoroquinolones was lower for animals than for humans, but there was more variation between countries than for cephalosporins.

CONSUMPTION (HUMANS)

AND RESISTANCE (HUMAN BACTERIA)

■ **3-4th gen Cephs:** positive association for *E. coli* (BSIs)

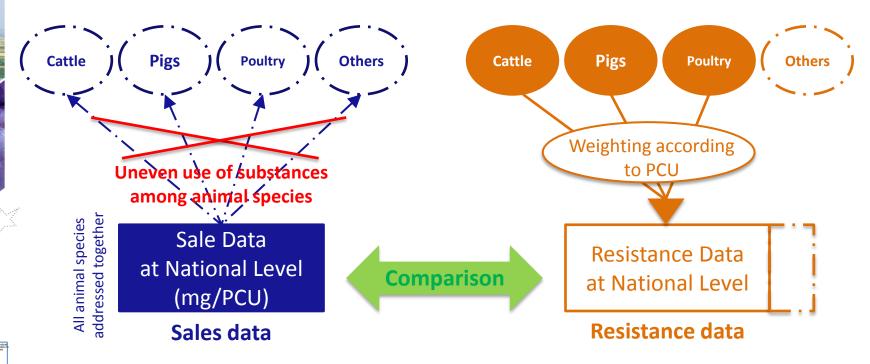
Fluoroquinolones: positive association for E. coli (BSIs). No association for Salmonella spp., S. Enteritidis or S. Typhimurium

Overview of data currently available in animals

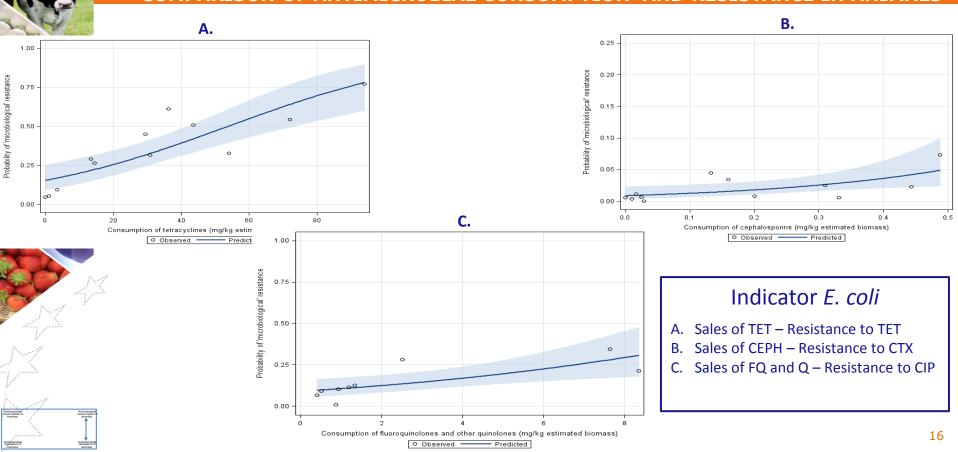
Poultry Pigs Cattle **Others**

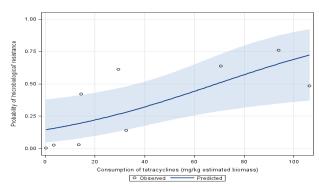
All animal species addressed together

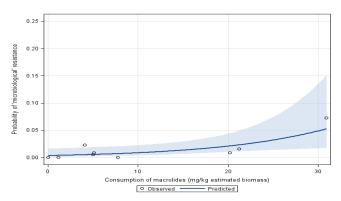
Sales Data at National Level (in mg/PCU)


Sales data

Resistance data


'Summary indicator' of resistance in animals

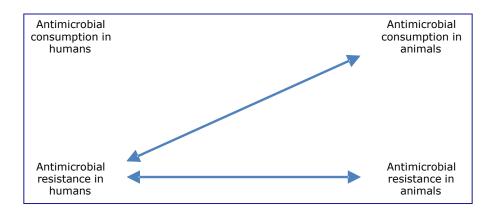

Bacteria	Antimicrobial class		<i>P</i> -value
Indicator <i>E. coli</i>	Tetracyclines		<0.05
	3 rd gen. cephalosporins		<0.05
	Fluoroquinolones		<0.05
	Fluoroquinolones & quinolones		<0.05
C. jejuni and C. coli	Tetracyclines	C. jejuni:	<0.05
	Macrolides	C. jejuni: C. coli:	<0.05 <0.05
	Fluoroquinolones	C. jejuni:	<0.05
	Fluoroquinolones & quinolones C. jejuni:		<0.05
Salmonella spp.	Tetracyclines		<0.05
	3 rd gen. cephalosporins		<0.05
	Fluoroquinolones		NS
	Fluoroquinolones and other quinolones		<0.05


Indicator *C. jejuni* –TET

Countries included: AT, DE, DK, ES, FI, IT, NL + CH, NO P<.05; OR=1.026; 95% PL CI: [1.006, 1.050]

Note: the association remains significantly positive after ignoring the point displayed on the middle right side of the graph: P<.05; OR=1.038; 95% PL CI: [1.012, 1.073]

Indicator *C. jejuni* –MACRO



Countries included: AT, DK, FI, DE, IT, NL, NO, ES, CH P<.05; OR=1.091; 95% PL CI: [1.018, 1.176]

OTHER POSSIBLE RELATIONSHIPS INVESTIGATED

For both cephalosporins and fluoroquinolones: positive associations found between resistance in indicator E. coli from FP-animals and resistance in E. coli from humans (BSIs).

Resistance in human *E. coli* correlated with usage of antimicrobials in FP-animals and in humans.

AND RESISTANCE (HUMAN BACTERIA)

- Cephs: no association.
- **Fluoroquinolones:** positive association for *E. coli* (but not for *Salmonella* and *Campylobacter*).
- Macrolides: positive association for Campylobacter.
- **Tetracyclines:** positive association for *Salmonella* and *Campylobacter*.

CONCLUSIONS

- Marked variations between countries both in the overall consumption figures, and for consumption of cephalosporins and fluoroquinolones
- Associations between consumption of selected antimicrobials and the occurrence of resistance in bacteria frequently observed

 Epidemiology of resistance is complex, and several other factors aside from antimicrobial consumption influence occurrence of resistance

LIMITATIONS

- Data on antimicrobial consumption in food-producing animals are not available by species
- Differences in systems for collection and reporting of data on antimicrobial consumption and resistance in bacteria from humans and animals have limited the potential for direct comparison
 - e.g. five-dilution difference between countries in the breakpoint applied for resistance to fluoroquinolones in Salmonella spp. from humans
- 'Ecological analyses' = hypotheses generating study
- Due to characteristics of data, interpretation criteria, and units of measurement, results should be interpreted with caution!

DISCUSSION POINTS FOR FUTURE ANALYSES

- To improve integrated analyses, more detailed and comprehensive data are required.
- Factors, such as
 - Antimicrobial Consumption Data per animal species
 - Resistance Data from all countries, in relevant animal species and food
 at a detailed level would be required.
- Other factors that would have to be considered are:
 - Resistance to other antimicrobials (co-selection phenomenon)
 - Travel
 - Imports of meat

AMR: A PUBLIC HEALTH PRIORITY IN EUROPE!

EU Action Plan: 7 areas - 12 actions

Human

- 1. Appropriate use
- 4. Prevention of infections
- 6. Development new antibiotics
- 9. Surveillance

8. International cooperation

- 11. Research & Innovation
- 12. Communication, education

Veterinary

- 2 & 3. Appropriate use
- 5. Prevention of infections
- 7. Need for new antibiotics?
- 10. Surveillance

ACKNOWLEDGEMENTS

- EU Member States and other reporting countries
- Surveillance/Monitoring networks involved
 - □ EARS-Net, ESAC-Net and FWD-Net
 - Scientific Network for Zoonosis Monitoring Data
 - ESVAC

THANK YOU FOR YOUR ATTENTION!

EMA:

http://www.ema.europa.eu/docs/en_GB/document_library/Report/2015/01/WC500181485.pdf

EFSA:

http://www.efsa.europa.eu/en/efsajournal/doc/4006.pdf

ECDC:

http://ecdc.europa.eu/en/publications/publications/antimicrobial-resistance-jiacra-report.pdf

ANALYSES ON COMBINATIONS OF ANTIMICROBIALS AND BACTERIA

In Humans

Resistance data		Consumption data	
Bacteria	Antimicrobial substances	Antimicrobial (sub-)classes	
E. coli	Ceftriaxone Cefotaxime	3 rd -and 4 th -generation cephalosporins	
	Ceftazidime	Fluoroquinolones	
	Ciprofloxacin Ofloxacin		
	Levofloxacin Meropenem	Carbapenems	
	Imipenem		
C. jejuni and C. coli	Tetracyclines	Tetracyclines	
	Erythromycin	Macrolides	
	Ciprofloxacin	Fluoroquinolones	
Salmonella spp.	Tetracyclines	Tetracyclines	
	Cefotaxime	3 rd - and 4 th -generation cephalosporins	
	Ciprofloxacin	Fluoroquinolones	
K. pneumoniae	Meropenem	Carbapenems	
	Imipenem		

ANALYSES ON COMBINATIONS OF ANTIMICROBIALS AND BACTERIA

In Animals

Resistance data		Consumption data
Bacteria	Antimicrobials used for testing	Antimicrobial (Sub-)classes
Indicator <i>E. coli</i>	Tetracyclines	Tetracyclines
	Cefotaxime	3 rd - and 4 th -generation cephalosporins
	Ciprofloxacin	Fluoroquinolones
	Ciprofloxacin	Fluoroquinolones and other quinolones
C. jejuni and C. coli	Tetracyclines	Tetracyclines
	Erythromycin	Macrolides
	Ciprofloxacin	Fluoroquinolones
	Ciprofloxacin	Fluoroquinolones and other quinolones
Salmonella	Tetracyclines	Tetracyclines
	Cefotaxime	3 rd -generation cephalosporins
	Ciprofloxacin	Fluoroquinolones
	Ciprofloxacin	Fluoroquinolones and other quinolones

'summary indicator' of Resistance

- Combining two or three animal species: Broilers / Pigs / Cattle
 - Weighted mean of 'Resistance per species'
 - PCU: weight to allow comparability between sales data
 - Implicit assumption: Excretion proportional to the PCU

$$Ind_{Res} = \frac{1}{\text{PCU}_{cattle} + \text{PCU}_{fowl} + \text{PCU}_{pigs}}. (\text{PCU}_{cattle}. \text{Res}_{cattle} + \text{PCU}_{fowl}. \text{Res}_{fowl} + \text{PCU}_{pigs}. \text{Res}_{pigs})$$

Graphical comparisons

- Logistic regression
- Grouped data: group=country
 - Overdispersion'
 - Isolates are grouped into naturally occurring clusters. Isolates originating from the same country (the same domestic production sectors) are not independent, as they are exposed to many common factors that may produce the same outcome (antimicrobial susceptibility status).
 - Small sample sizes: Profile Likelyhood CLs
 - Sensitivity analysis to 'influential points'