Recent improvements in lactose crystallization and in drying parameters for improving quality and uses of acid whey and of related powders

P Schuck1,2, A. Mimouni1,2,3, MH Famelart1,2, D Naegele3, S Bouhallab1,2

1 INRA, UMR1253, F-35000 Rennes, France
2 Agrocampus Rennes, UMR1253, F-35000 Rennes, France
3 Eurosérum, F-70170 Port sur Saône, France

pierre.schuck@rennes.inra.fr
Background and Objectives

Lactose Crystallization and Thickening

Stickiness

Conclusions
Acidification
Cooling
Heat Treatment

Milk

Microfiltration
Ultrafiltration

Standardization
Renneting
Mineral addition

Casein
Retentate
WPC / I

Ultrafiltration

Permeate
MF / UF

± acid / sweet
± rich in minerals
± rich in proteins
± rich in lactose
± rich in residual fat
± rich in µ-organisms

Cheese

Whey
Biochemical composition of whey and derivates

<table>
<thead>
<tr>
<th>Component</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins</td>
<td>0 to 6 g.L(^{-1}) ± denaturated</td>
</tr>
<tr>
<td>Minerals</td>
<td>0 to 6 g.L(^{-1})</td>
</tr>
<tr>
<td>pH</td>
<td>2 to 7</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>1 to 7 g.L(^{-1})</td>
</tr>
<tr>
<td>Lactate</td>
<td>1 to 7 g.L(^{-1})</td>
</tr>
<tr>
<td>Lactose</td>
<td>30 to 50 g.L(^{-1})</td>
</tr>
<tr>
<td>Glucose, Galactose, etc.</td>
<td>1 to 5 g.L(^{-1})</td>
</tr>
<tr>
<td>EPS, etc.</td>
<td>Traces</td>
</tr>
<tr>
<td>Residual fat, Phospholipides</td>
<td>Traces</td>
</tr>
<tr>
<td>NPN (0 to 2 g.L(^{-1})), aa, NH(_3)</td>
<td></td>
</tr>
</tbody>
</table>
Permeate and Whey

Minerals

pH

Lactic Acid

Lactate

Fat residual, Phospholipides

Proteins

± denaturated

NPN, aa, NH₃

Lactose, Glucose, Galactose, EPS, ...

D I E T
A G R I C U L T U R E
E N V I R O N M E N T
Processing of whey powders & derivates

Whey
- Heat Treatment
- Whey Fractionation (MF, UF, NF, IEC, ED)
- Vacuum Evaporation

Concentrated Whey
- Lactose Crystallization

Crystallized Concentrated Whey
- Spray Drying

Whey Powder
- Storage

Whey Powder
TS = 98% (w/w)

Concentrated Whey
TS = 55% (w/w)

Whey
TS = 5% (w/w)
Processing of whey powders & derivates

Whey Powder | TS = 98% (w/w)

- Heat Treatment
- Whey Fractionation (MF, UF, NF, IEC, ED)
- Vacuum Evaporation

Spray Drying

Crystallized Concentrated Whey

Lactose Crystallization

Concentrated Whey | TS = 55% (w/w)

- Heat-Induced Protein Denaturation
- CaHPO₄ Precipitation

Variability in Kinetics and Crystal Size

Extensive Thickening

Fouling

Storage

TS = 5% (w/w)

Variability in Kinetics and Crystal Size

Caking

Maillard Reactions

Loss of Solubility

Stickiness
Background and Objectives

Lactose crystallization and Thickening

Stickiness

Conclusions
Viscosity = \frac{\text{Shear stress}}{\text{Rate of Shear Strain}} = \frac{k \cdot \text{Torque}}{k' \cdot \text{Angular Velocity}} \text{Maintained Constant}

Controlled conditions of T°C and stirring speed / geometry

AR 2000 Rheometer head

Four blade paddle stirrer

Fill level

Water jacket

30 mm diameter cup

\text{Torque} = f \text{ (time)}
Thickening at lab scale

Concentrated Acid Whey

Refraction index (°Brix) Lactose Crystallization Torque (µN.m)

1. Decrease in the concentration of soluble phase
2. Lactose crystals counterbalance viscosity decay
3. Sharp increase in viscosity = Thickening

(Mimouni et al. 2007)
Separation of proteins and lactose crystals from concentrated whey

Lactic Acid Whey

- Concentration
- Lactose Crystallization
- Centrifugation
- Filtration

Proteins

UF membrane

Lactose crystals

Lactose Crystal-Free Concentrated UF of Acid Whey

(Mimouni et al. 2007)
Thickening occurred regardless of the presence of proteins or crystals of lactose.
Viscosity of particle suspensions:
- increases with volume fraction of particles (Petrie, 1999)
- strongly increases with the particle aspect ratio (i.e. elongation) (Pabst, 2006)
Influence of pH

Torque Amplitude (µN.m) (®)

(Mimoun et al. 2007)
Influence of pH

Lactic Acid Whey

- H_3PO_4 (pH 3)
- H_2PO_4^- (pH 4)
- HPO_4^{2-} (pH 5)
- PO_4^{3-} (pH 7)

Anions

- RCOO^-
- RCOOH

Association constant with Ca$^{2+}$ (L.mol$^{-1}$)

- RCOO^-: 15
- H_2PO_4^-: 11
- HPO_4^{2-}: 642
- PO_4^{3-}: 2.88×10^6

(Holt et al., 1981)
(Mimouni et al., 2007)
Influence of Ph Example

<table>
<thead>
<tr>
<th>pH</th>
<th>Phosphate concentration (g.100 g^{-1} H_2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>5.0 ± 1.5</td>
</tr>
<tr>
<td>5.1</td>
<td>60.4 ± 0.9</td>
</tr>
<tr>
<td>6.1</td>
<td>64.7 ± 2.4</td>
</tr>
<tr>
<td>1.5</td>
<td>4.4 ± 0.5</td>
</tr>
<tr>
<td>40.2 ± 4.1</td>
<td></td>
</tr>
<tr>
<td>25.0 ± 4.7</td>
<td></td>
</tr>
</tbody>
</table>

Torque amplitude (ΔF, 10^{-4} N.m) of calcium lactate supersaturated solutions ([Ca] = 1.34 g.100 g^{-1} of H_2O), at different pH, during stirring at 120 rad.s^{-1} and 20°C, with and without phosphate ions.

(Mimouni et al. 2007)
Background and Objectives

Lactose crystallization and Thickening

Stickiness

Conclusions
Acid lactic whey / permeate, mono & disaccharides, polyols, hydrolyzed compounds, minerals

Low T_g / ^ Stickiness

- Inlet θ & Flow rate
- Outlet air θ & AH
- θ Droplet & Powder

T_g Lactic acid = -60°C

T_g Lactose = + 90°C

Integration of T_g
Materials

Pilot workshop: Research and development for evaporation/drying

«MSD type» drying tower
80 kg of water evaporated per hour
Spray drying

[Acid lactic whey] at ≈ 55% TS, at ≈ 80% crystallized lactose

<table>
<thead>
<tr>
<th></th>
<th>Inlet θ°C</th>
<th>Outlet θ°C</th>
<th>AH g.kg$^{-1}$DA</th>
<th>[C] kg.h$^{-1}$</th>
<th>Powder kg.h$^{-1}$</th>
<th>€ / ton Water</th>
<th>€ / ton Powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ALW]</td>
<td>233</td>
<td>89</td>
<td>41</td>
<td>258</td>
<td>185</td>
<td>78.5</td>
<td>61.6</td>
</tr>
<tr>
<td>[ALW]</td>
<td>155</td>
<td>75</td>
<td>26</td>
<td>129</td>
<td>92</td>
<td>99.9</td>
<td>78.5</td>
</tr>
</tbody>
</table>
Background and Objectives

Lactose crystallization and Thickening

Stickiness

Conclusions
Origin of thickening is due to the formation of calcium lactate crystals.

Concentrated lactic acid whey is likely to thicken because of:

- High [Ca] + High [Lactate] + pH ~ 4.5

Origin of stickiness during spray drying is due to the low T_g value of lactic acid (-60°C).

To improve the quality of the lactic acid whey powder:

- Modify the calcium lactate supersaturation (pH; Phosphate; Citrate; TS; Temperature)
- Modify the spray drying parameters (C flow rate, inlet and outlet air θ, outlet air AH)
MERCI

THANK YOU